
7 D-AlG2 299 RCHITECTURL TRDEOFFS
IN THE DESIGN OF MIPS-X(U)

1'1
STANFORD UNJY CA COMPUTER SYSTEMS LAB P CHOW ET AL.
1997 NDASS3-83-C-S333

UNCLRSIFIED F/O 2/6 NL

mEEhhE

low m .w - w r2

o il ItII I

To appear in The 14th Annual International Symposium on
Computer Architecture, June 3-6, 1987, Pittsburgh, PA.

Architectural Tradeoffs In the
~--, Design of MIPS-X DTIC

OTiC FILE COPY) ELECTE
Paul Chow and Mark Horowitz JUN 2 91W8

N% Compter Systems LAborratoryD00 Stanford University
Stanford, CA %3 A

Abstract 20) MIJPS a then to use 6-10 of these processors a die nodes
ia shared meor -utpocs. resulting machine

would be about two orders of magnitude more powerful tan
The design of a RISC processor requires a careful analysis a VAX 11(780 minicomputer.
ofhde tradeoffs duat can be made between hardware

comkxiy ad sftwm A ne geeraion ofproessrsWe describe here the design of the single processor, MIPS

we built In takre advantage of mor advanced techologiMs X. The overriding principle was to keep tie design a simple
new and different tradeoffs must be condecrpd. We examine a possible. The originial MIP team was heavily involved in
the design of a second generation VLSI ISC processor, the initial architectural discussions, and they helped stee
MPS-C X 2 MIPS-X away from the kinds of trouble that they faced with

MIPS- is it mcsar to teMIPS project atSafr MIPS. The major area of concern were control relatd, of
Cii hichthe ostimportant were considered In be instruction

processor that use a simplified instutonst pipeling and deoemd xeto hndft Boh were not considered
a software code reraieV)~we the quest for higher eal nug t drot MIPS ein a d hip.ificl
performance, MIPS-X uses a deeper pipeline, a much simpler ipeetto rbesi h ia hp
instunction set and achieves the goal of single Itcl excuio The design of the instruction format was straightforward
using a 2-phase, 20 MHz dck~i. Ths h since we religiously adhered to a maxim given in the first
inclusion of an on-chip tinstuction cah n carfal working document on MIPS-C. It stated, "Thie goal of my
consideration of the control of the machine. Many tradeoffs istruction forma should be-
were made during the design of MIPS-X and tis pqae 1. simple decode,
examines seveal key areas. They am the organization of the 2. simple decode and
on-chip instruction cac the coprocessor interface, branches 3. simple decode.
and doe resulting branch delay. and exception handling. For Any attempts at improved code density at the expense of CPU
each bse we present the most proaisinig alt ne performance should be ridiculed at every opportunity."
considered for MIPS-I and the approach finally selected. Needleas to ay, all tistruction sets considered for MIPSIC
Workig parts have been received and this gives us a firmn were fixed format 32-bkt words and the amount of decoding
basis upon which to evaluate the success of our design. was minimaL The effects of having this simple instruction

A format is discussed in the conclusions.
Not all areas were as stable as the Instructioin decode.

Introduction Before presenting the majo tradeoffs we made in the MIP-I
design, the next section describes the basic anhiftectmr of the

The first generation reduced instruction set processors processor and the following section gives an overview of die
(IBM 301'. RISC2. and MJPS. 5) haesow b hardware and organization of the machine. This is followed
Importance of making the correct tradeoffs scoss the by several sections, each discussing a major design issue in.
boundary that separates hardware complexity and software MIPS-X' the solutioni used and the rational for that decision.
0 nctionaliy. Hardware should only be used to support
features that clealy improve performance. As
Implementation technology improves, new fetatures can be MIPS-X Architecture
considered and new tradeoffs must be made

The goal of the MIPS-IC project was to combine a new TIhe goal of the MIPS-IC project was to design a
technoogy, a 2pim, 2-level inta CMOS process, with the microprocessor with an order of magnitude mere performance

knowledge ad experience gained from the first generation than the original MIPS processor. MIPS.-X borrows heavily
RISC machines, to build a single processor with a peak rate of from the original MIPS design; it is again a heavily pipelined

machine, and the resulting pipeline interlocks we handled by
______ _____ ___dte supporting software system MIPS-X differs from MIPS

Permssin t coy wllict fe al o pe of hinmatria isin that it alm for single-cycle execution using a much faster
2 1 1inoden to copiemst fan allon or iirbue fo dhS i rectl clock (20 MHz), a deeper pipeline and better iplementation

cosucl advaidagls, dhe ACMA opyngtt notice and the title at theehnloy
palilonic ad its ds apear, sad soice is given tha copying is by The high instruiction rat means that memory bandwidth is
lesaiham of the Ajeocisiom for Conpt Machinery. To copy an important consideration. At the projected clock firequency
0& hs, or to upbtia r iresa feeandor spciic prussia.

for puiblic tlaend94i118

distribution is untimile4

of 20 MHz it ks very difficult to satisfy instruction and data A Hardware Overview
Sfth requireets across die available package pins. To

aleiaethis rolem, Ml]PS-X baa a 2K-byte on-chip The mqo components of MIPS-X ar the instruction
hatuctottcaceIcache). Only instructions that miss in the cache dama way. the instruction register and the datapath.

duce as hough the package pins. The Icache is placed Th datspat in comosed of the register fie dhe execution
aoetedauaat in the area of the chip diet is normally unit, PC unit and the tUg store for die instruction cache. The

and for microcode storage aid processor control. Data ognzto fte at ssoni iue2nferences aid intuction eferenca that mins in die IcacheoraiaonfthspaeIscw.nFgue2
an handled by a larg 64K word external cache (Ecache).
The Ecacbe use a sarmed bus to comnunicate with main
meoy. An added benefit of thin two-iovel cache in that it
peovidee a second part to memory; die processor can fetch an
instruction from die Icache at die Ben time it in acceseing
off-chip dats.

A deeg pipeline in used to allow the machine to sart a new sbk*C
inetuction every cycle. Each instruction in divided into five
pipeline stages. They am deacribed in Figure 1. All control is
hadw ired

L

IF Instruction fetch. i~nw
iF Instruction decode and register fetch.
ALU ALU or shif operation PSM xcb P a
MEM Wait for data from miemory on a load and outputai

data for a store.
WD Write die result into die deetination register. ___________

Iur 1: MIFS-X Pipestagee

The machine usee a load-etore architecture; die only
menmory operations me explicit loads and stores The use of
the ALl) cycle depends on the instructioni being executed. igum" 2: NMS-X Floorplan
For compute instructions, thin cycle perfom die desired
computation, for memy Instructions it in used to compute The instruction cache in organimcd ae an S-way act-
the address of the desired memory location and for branch associative cache, with 4 sets (rows) and 16 words in each
instructions, it is used to compute die condition. Al emr block (line). A sub-block replacement schemie in used so
operationis use the same addressing mode; the contents of a theme we 512 valid bits, one per word, as well as the 32 tags.
register ame added to a 17-bit signed offset to produce a 32-bit These me located in the datapath to decrease the timi eed
address. There am 32 general purpose registers in the to detct an instruction cache miss.
datapath with a 32-bit ALU and a funnel shifter for compute instucio register laclhes the output from the

opeationis. instruction cache and pmkdcodes moo- fields of each
Although a compute instruction frdnshes its computation instruction It also controls the flow of data during cache

during die third pipeline cycle (ALU), die result is no writtenmisso atmfuiucnbewten t heab.
back into the register file until the last pipeline cycle. Thin musses acce is that intr uction a ewitte latche cacthe
delayed wniteback is done to make instructions only change instruction register from the data bus while it is going to die
machine sdate during their last pipeline cycle, 1ring11 cache miemory aray. This latch provides a very useful testing
exception handling much easier. Bypassing is used to reduce feature by snlowing the processor to run with die cache
the number of pipeline interlocks. disabled.

All instructions me reetartable an MIPS-X will support a The register rile contains 31 general purpose registers and
dynamic, paged virtual memory system. To help implement a hardwired constant zero register. It is useful to have a
such a systen6 MIPS-X supports both maskable an read-only register me a place to write unwanted data. Thec
nounaskable interrupts. For systems requiring ,er complex constant rero was chosen because it in used as a soaue value
interrupt handling, an external interrupt coprocessor can be for many instructions such as loading immediate values by
added. MIlPS-X also provides two operating mnodes, system ding an add immediate to Register 0. Registers to handle
and user, that execute in separate address spaces to provide two levels of bypassing and die memory data registers me
the protection needed to implemn 'an operating system The alan in thin Section.
current mode is stored in the PSW and it can only be changed Shifting and ALLY operations me done in die execute unit

h ile executing insse od It contains a 64-bit to 32-bit funnel shifter and a 32-bit AU).
There is also a special register, called the MD register, that is
used during multiplication and division instructions.

The Imupum counter, air PC unit, contains a displacement then MIPS-X will have an average: bandwidth of 26
Wirfor~ branches, -n hiumenler and a chain of sift MWosds/s and a peak bandwidth of 40 ?dWosdaws. Clearly,
rgStie -to sane te PC values at the instructions currntly in on-chip mmor would help to alleviate tis bottleneick. Fbir

execution Having both t displacement adeir and lhe MIPS-X we bulk an os-chip 512-wor Instruction cache ad
inemaneer means thot an oon a th brach condition is lhe tradeoiffs made in its deepign described In detail
. uwin1e'do PC bus can be driven with the correct value, elwhere6. We will only discuss the salient featuries here.
The PC vdme In the shift chain ame eeded to restat the The hatziato cah wai the &t part of lie chip to be

mahine after an Olcphdn designed. We first fixed a die size that we felt had enough
hi a smal man above each section of bhe dtaepath is local a to ileent bhe functionality we desired yet small

instiractin decoding and control for that secition. The overall enough that we could expect a reasonable yield of woring
control of die machiine Is handled by two finite state machines parts. The datepali and control would take about half of lie
located in bhe PC unit. One of there is used to handle Icache a= inside be pairame so bie cache wast allocated bec
misses an bhe other one does instruction squrhMn during remaining ma fixing its uam and aspect ratio. The other
exceptions and branches. Squahing an istirtction converts it main constaint on bhe cache wait that the cycle time had io be
Into a "e instniction. less than the 5(les clock cycle. Given these constraints we

investigated many different floorplans and organizatis
Criticl Pth$ Vtrn to minimize bie average cost of an instruction fetch.

To run the procesw at or above 20 MHz meant that much Tis cost is a function of the cache hit raw,~ be miss penalty.
attention had to be paid to possible critical paths. In each and the cache access tim.
cycle we tried to minimise be number of series operations as We found that bhe performanc of bhe cache wasior
much as possible. Wheneve fecasible, a signal wast even a sensitive to bhe bhe miss service time than the miss ratio. This
fall phas In be decded and driven from one section to meant thattbe implementation details of bhe cache were mom
another. impottant tha the cache organization because the

Thes was a few paths that we felt wos mast likely to be imlemrentation affected how quickly we could determine
critical paths and we "pn a lot of time concnuin on whether an address hit in the cache. With our pipelining, this
them The most important of these involved external data meant bhe difference between stalling bhe machine for 2 or 3
fetches. In be specification for bhe pipeline, addresses WOuld cycles o a cache miss. By placing bhe tUS and vald-b
be computed during #1 of bhe ALM cycle and driven to bie stoem in bhe datapath close to bhe PC unitsa 2-cycle miss could
address pads during Q. The Ecache would be accessed be realized. This lengthened bhe datapaith by bhe numbe at
during die MEM cycle. Even assuming that be address could cache tags and mecant that we could not have smaller black
be driven off be chip by bhe ead of AWl, conpleting a fetch sies bectase mome tags would make the datapath too lae&
in 50 us would be tight because of the address buffer delay, However, the benefits of having fewer cache miss cycles fair
memory access tie and setup tin. foir be fetched data outweigheod the slightly lower miss rane achievable by having
Getting bhe result of the tag comare back in a cycle seemed smalfler blacks.
impossible since i would also involve delay through soeInitial simalaitions of this organizatin yielded
comparators. To ease bhe constraint on getting bhe tog disappointing results. Using a ad of medium Size prugruns-
cam e;ps back, we decided to use a late-mis ignal. This we achieved miss raes that averaged over 2D1. We felt that
meant that be cache would reform the processor at the real programs would have wors miss rates, pushing the cost
begineing of bhe WD cycle whether bhe cache access during of an instruction fetch caose to 1-5 cycles. We found a way to
MEN wast successfual. If theme wast a miss, thee be processor reduc bhe number of cache miss cycles to I by writing bhe
would effectively go back and re-ezecut $2 of MEld to bry missed instiruction into the Icache as soon a it got back onto
be access again. This loop would continue until the cache bhe chip, but since accessing external data wast already one of
got the data and signaled a t. Throughout the design we had bhe critical paths we did nor want to risk extendn bie cycle
to be carsful not to unnecessarily add delay to bhe memory- time to complete bhe write. Instead we realized that bhe 2
keth pat cache miss cycles could be used to fetch baut 2 Instructions,

Other -f that we tried to optimize included bie path bhe one that missed and the next one to be executed. Doing
frum branch condition generation to driving be PC Bus, this double fetch did not affect be critical Path oak in fact.
instruction cache hit detection, squeezing bhe ALl) time into 1 wast easier to do tha fetching back only one instruction
phsse to get bhe address out by the end of bhe cycle and doing because it minimized bhe disruption of be pipeline. Fetching
register reads and writes in one cycle. The Iatter two wers beck 2 words almost halves bhe miss ratio, driving down bhe
strictly circuit design issues and us not discussed any furthier cost of an instruction fetch to that of a single-cycle miss. The
hen. key realization here wast that there wast extra cache bandwidth

available and that we could use it to fetch back bhe next
Instruction, significantly improving bhe cache mis ratio

The Instruction Cache without impacting the cycle time of bhe machine. Fetchng
back moire wood would not be advantageous because bhe

Advacesin rocssorarcitetur andVLS wdo)Wbandwidth of bhe cache is fully used.
hav ~an inaproesr aiecuroe nd VL patcanog Trace driven simulations show that with oar set of large

haveincease fater hanbe iproemens i pacagigPascal and Usp benchmarks, bhe cache has an average miss
technology. This has mesat liat hibprfn ceVS rat of 12% resting in an average instruction execcuting in
processors have becrm o memory bandwidth limited. For 1.24 cycles.
example, if we assume that one instruction is fetched every
cycle while, on average, data is only fetched every thir cycle,

%*1ftU1W~ 1* ~ %9 . ~ %

The Coprocessor Interface cache miss. Our initial benchmarks indicated that this would
not cause a significant performance loss but when we

Mas oproesewittlrfuewas onsieredgenerated -- traces from some floating point intensive Code we
I h ill othe dein. tr as col eed romo doe ver realized a uignificad percentge of die istruction were

baegn f disin ihi eeP design am Wloldt mr d e it floating point instructions This caused a re-examination of

spetat considerable Ism 17ft fo fnd an efficiet interface h c =WntccecpoesriatSinadldt
that would give ressonable performance ad still fit within the tie coprocesso schemie diat wan finally chosen.
constais of VLSI packaging and design. This prole was The opcode encoding of tie machine wan changed agpin,
ezaceated by the pIus nof toe cuchi instrction cubhe, this time maeking coproceabor operaions a form of memoty
since now all Instructon would nwt be visible ao dio outside oper-tio- or maeaccuratly, nemory Instructions became a
"Ord. type of coprocessor instruction. Coprooessor instructios

The proposal for doe first btsuction set had a single bit in work in this scheme by using the address lines to transmit the
every instruction to specify whetherthe Instruction, was for ~ copirocessor instuction A memory instruction takbs a 17-bi

theC7 ora o r P- , a nstucios wli O offset constant and adds it tn the contents of a register to
coproer bit set, IS-X would perform all tho addressing compute die mnemory address, I ie memory system ignores
calculations but would not affect any of it sate daL the cycle, it is possible topass die 17-bit offset constant to a
in. anl coprocessor memory lntructions still used the corocessor asan inttion. The instruction would include
p or , tognrt h drse n orqie oto a 3-bit field to specify the coprocessor being addressed,
signals, whie tie rcopucesr P g ither acted a a ore rsn although the processor does nam need to know the format of

of o ds. o mke a cproessr ikstuctonsvisblethese Instructos. Th1s scheme has several advantages over
of~ ofe dat.T eto proces sor ddcae ibu was~ reqie oou earlier Mes. A coprocessor instruction bus is not
oubiae intrcto di e deiae erchp was ci required. since die Instructions we sent out over the adrs
badsh2 diesdatrges: n off irpcessor cm~miaisu adr top. Only one extra pin is required to tell the memory
h a g 2 dsad antaes all antrprocessor bomumcatlo hadW to system to ignore the cycle. Additional pin can now be used

g o wr woug thaty d a m copoeo bsc wa revired Ao for alleviating die pin bandwidth problem in other parts of the
min cocernwa thate half o e amoe spaicen eod to system. Using coprocessor load and stor Istructions, data

die oprceasr, im ed t bea mr eficint ecodng.can be directly trasferred between processors by making the
Mhe nex Instruction format divided die opcode space int cops ocessor supply or read data on the data bus instead of the

dun Insruction types: meory operations, braches and memory. Also, the coprocesmo instructions can be cached
co111111te operatios. The memory and compute instructions just lik all die other instructions. T7he disadvantages of this
hed a 3-bit field to specify the coprocessor number, branchesacheme e that there e fewer bits to specify the coprocessor
wene only done on the msin processor. If Coprocessor 0 was instructions, and all data to and from die coprocesus
specified then die instructio wan for die -ai processor, registers nuast be transferred through the maui processor
otrwise *ae Instruction wan for one of the 7 available registers first. before it can be sent to memory.
Fop rcessos. TO bIanc on a copirocessor conition, die Hvn Dtase l aatruhtemi rcso
coprocessor would first be told to assert a sigl HavtI tee ingr wat l tranfeualht thrug beiefiie mhan proessor
maen processor and a brosch ona caprocew bwu or brach pogintompuwain. %s though to e ifurcient mordeyfioatingh
an coproco fere would be executed to tes the status of pintuctonputto This lead to urhe adifation fthe
that input Several coproceasors coul be connmected by wire- intucin .~ 7u nbcin provide one special
onntg bar outputs. This schenme still had the pole du copiaceswo with its own load and sltr lInstructions, which
data trandfers between processors mat be done through we assume wil be a floating point unit (PPU). The interface

Memory.now allows one special coprocessor to load and store Its
It wan then proposed that all coprocesso instructions must registers directly to memory, without pmsualg through die

be non-cached, remonving the need for a coprocessor bus. The main processor. in a single Instruction All other coprocessors
issu of pin and pin banddth wan heavily debated withi requite one extra cycle for memraiy loadators.
die MEPS-X design tern Pins on the processor were In short One final tweaking of the interface wan to remeve the
supply mid devoting approxlmately 20 of diem to the copoces branch instructions. The mant resson for their
coprocessor interface seo xe ssivd Th qusto wa removal was die problem of saving state in the coprocessors
aot just whether there were aeug pins available. Without acos uxepin. The solution was to jogs read a
die coprocessor bus, MIPS-X would need only about 90 coprocessor statu registe into a main processor register ad
silina pica. a relatively small .iumber by todayrs standards. then branch according to the value of that regiser. This
Rather die arument focused on what would be the beat use of change eliminated the last set of problens we had discovered
these pins if we bad them. It wan not at all clear that Usingwihteopcnr sraou
diemefor the coprocessor interface was the most efflective use
of the puts. To preven coprocesear instruction fromt being By using the address Ines, the resulting coprocessor
cacbed, a bit in the instruction cache would be sme when an interface but aistruactions that emn be cached, does no require
hasuction being loaded was detected to be a coprocessor a large ooprocessor bus, allows efficent commnication

iructon. If die bit wan set during an insiruction fetch that between th poeso regsers and the coparocessor regisers
mnissed, the P o~ g s P ol o h ntuction off th and Jeu a single: coprocessor have direct access to mera

maainoy bus an die ain processor read the instuction from
samy during die cache miss cycle.

7Te obvious disadvantge of this approach was that all
1, p mc 1o operations incurred an overhead! from the isternal

Branches wisest A n'ce 30 we added the aeparate adder to compete the

Having set out t initial architecture of the sanIne we Dui tis peio weals becm concerned about the
quickly ran into the prbe of branches, and branch delays. effect of doi branh delay Am01 on the machine's perlimmance.
Branches have a considerable effect on the j;peF -nee of a Or is a pipelined machine ame or am inteactions
canspute especially one that Is pipelined s deeply as MIPS- following a branch we fetched before the remst of the
X The effects of branches In a piplhed machie in condition evlution is kown. Nf than Instructions =
particularly noticeabl beAM braches interrut ase flow of executed, thee the machine Is said to have a delayed brawk
the pipeline. Decidons about the desep of the pipeline and meugthe effect of the branch occrs after the actual branch
the type of branch Ah usend we not Independent. Control, insrin .IU numbe Uifof cycles or del. Ale that execute
complexity is a Serious isue efr do banch andUtOI beforethem sa branch

We very quickly decided to eliminat th e- of condition ccurs is called the browk delay. Pilling theme delay aloM Is
coa in MIPS-X If possible. This decision was mnotivaled by not a simple tooks' 9. 10 and affucm the oWeall puroance.
two fact. Pirst, Instruction trace statistics indicated that a I doe MIPS-X pipeline, it is most stralihfowrd to
prior compute operation Ifrequently generated the coodidon implement a breech with a delay of two. The ALU is Send to
code needed for a branch. In nogl IDS of the brandie 1- comput eh branch condon during dthirdd (ALUI)
explicit compare operation um" be perfornmd to set the plpes ~e Filig two delay dots did nam Seem very
condition codes. A previous aaalysIaO of empirical data prellg sing dat orni MIPS instruction tsewe
showed that the number of instructions Saved by condition expcte over SM of tde dots to emn empt9l. This
codes was very small and essentially useles. Second, perfomance problem lead to dimsussons about how to reduce
condition codes generate stae that needs to be saed and the branPI delay to 1 cycle, and whether we could use branch
tutorevd during exceptions. Handling condition codsa in a prediction to help re1- ce the wadted cycles".1 12.
pipelined machine is difficult bece when -n exception A quick mwar ws proI iPose s a method to reduce the
ocoure great cue mst be taken to ensure that the correct branch delay. In this Schenme simple comarisons between
condition codes am saved. It seeme to us that condition the two sour= registers we doe before the ALl) cyde. This
codes provide litle benedit and have polential complexity cowparlson would be jPrforF d at the end of the RIF cycle by
problenna. In particular, generating code to use condition placing a comparator on the output of the register fiL Only
codes efliendly is not a straightibrwurd as one might equality and sign comparisoes cmn be obtined asig thi
expect. All the branch schemes considered for MEPS-X method since there is not enough time for an rithmetic
contained -n explicit compare in the branch. Thi actually operation. Other conditions such Soser chmn would
reduces the amount of c noft I logic required because dhere is require two steps. The ALU operation is done first se the
so nd to worry oboe bow to Svethis sm. resultitsanrdin areiser. This reultisthamused ina quick

Two wlhmtic operatons we required to execute a brac givmcmpmbins~kU.m
instruction. One is to compute the breec condition and the The main question that needed to be resolved Initially was
other itsto compute the branch destination. A bucn do what percentage of brache could be handled by a quick
uses condition codes compute the brach condition befoIn compare. Statistics frow, Katevenis's thesis indicate that by
the actal branch instruction and aves the condition in a changing the compiler slightly, about 30% of all bra-che can
condition code register. The fiast idea conceived for be converted inko quick cnyusst . but til - that 20%

-mlnetn branches in MIPS-X computed the condition in of all branches take two cycles. Our initial statistics indicated
the brach instruction, but did not compute the branch that the number of branches that could be handled using a
destination. Instead thme branch destination was made quick campus was between 70% and 80%.
explicitly visible In the arcitectium. The use would have to The quick compare wus eventually dromp ped because it
load aeWcler C ihtebac destination. The could potentially lengthen doe processor cycle de. Th

th o d ex Seunilintutodpnigo the to the AWU and since the values on the bases could come
computed condition. An observation was made that my frorn a bypass source it was possible dthah buses would nam
low loops contain Several forward branches due to construts be Stable until late into that cycle, paricularly for a peiu
like If-theelse salenunts so it would be goo to have memory fetch because the data would only be back at the very
sevral PC+] registers. Pour was felt to be 5Iiffixient. This end of the cycle. For the quick compare to operate, we would
would allow the compiler to hoist tdestination address need to perform a compare on these values and then use this
caluos out of the l"o. Without this featre the contents result to select the correct address of the neut instruction. The

of PC.) would hae to be loaded from a register for each potential incres in cycle time disconunted its slight advantage
brunc within the loop for each iteration of the loop. in the average numbher of cycles it takes to complete a brach.
This sceI sti had the problem that there was somae In retrospect, our decisio was corret. In the final machine,

tha at be saved (the PC+ 1 registers) when an exception the delay from the generation of the branch signal In driving
occurred. Alm, decidi hew to use the PC.)I registers could the correc value on the PC Bus is long (mwed OD be caot
be cumberuome for the compiler system Finally, with four 20 as). Even providing a fall phase to drive tis path leaves it
special registers it wan n longer clear that tis solution was on a critics] PAth
essler to implemn o simply including a Separt adder to Left with a brach delay of 2, we investigated branch
compute the destiaon while do. ALIJ performed th prediction s a way to reduce the effective branch delay.
comparison. At t int - n the design, adding a Male There were two prediction algorithms tried: branch cache. and
herdSeANI to 1he datoeth to make thn control simpler was dhe static prediction. The branch cache was quickly discarded

when we discoverd thot it hod to be fairly larg (much TheischeM we finally Chos ama efull coqmar and
reeler than 16 enatries) to get a high bit rule It would also squissh apdonaL with two slats. Our initial estimates about

affc t*e An of our instuction cache. Besides, it ever did the coat of the double slobs Woond out to be slightly optimistic.
musch bow O t dc prediction and wasnmbc am Whom we predicted dhe a verag branch would take 1.3
complex Static prediction would use information at co1mp;le cycles, Meulls uift the actual nronin showed that the
done (possably with pmoflWe to predict which way a brunch average brach took about 1-5 cycles for soodl benchmarks
would go. using traditional optimization. However, we have emc

To mioke use of the prediction infoaton we considered develped betteroptkmization techniques and our mst Prnces

inpluetn -- a-quairg, te abiiy to convert - ewctn results show that even with lImp Pascal endi Uip benchmarks
J@16 a nep doth branch did not go in the predicted directio. the averag branch takes 1.27 cycles.
In MIPS the instmuctions in the branch delay dots in always Implenmaft squashing was a gamble because we were
excuted. The suraeg for choosing instructions is to t try not completely an how it would affect exception handling at
In move an instruction fro. before the brunch into the dot if the tim we made the commiment to use IL. It turne out that
so istuctions can be move past Mie branch the next choice they mesh Sagether very well as described in the next section.
is to fed instrections fro the destination or the sequential
polh that have no effo do I t b Inc goes the wron way.
T1a If you predict corrctly. the slot perftrms a muM EcpinH n ln

wpinuc-o I ipyntedd. Thelast aleatiecto n plsc the designl of the machine proramd, our concentain
an do csecond chie slor Spnthi eas. italosM shifled from the function the machine was going to perform

, -uc- d rMon th broach deatizaston to be plce in h to how these functions were going to be cmonboled. MIPSX
slot even when dims is an adverse efac V .the~c ' - beneft~ gready from the experience gained during the MIPS

to ren ThyeM machine squashes din insuction (ro design. Handling exceptions in MEPS caused the mosut
it Who a noep) Uf din branch gos the wrn wy complexity in the machine because of the large number of

With squashing there ore tee options for dealing with on possible stats in the processor during an exception. Theme
-F.,or n th deay sotsgivig tree ossble ranh Mates were the result of the processor trying to complete the

ingum nogsa h in d o nttosoe deaalbgv~ bepsilways insuiZCons that occurred conceptually before the foult but
tYP5 ma Uia Whe thesl~ In5UUC~a5 lW~33 sill in the pipeline, and reloading the partially full pipeline on

oecw4 apa 4 dont So wham dte dlot instuc~tions mue a return hao an exception. The godl for MIPS-X was to
eascted f te brnchtake andsqush (f ~require as few states a possible to handle an exception so the

isuCtm mu " ezMYcutad If the brnc does 6001 20IMID Since stat moln deign wol not be difricult The underlining
we decided D mus static prediction, an in die static eas am rdewa to kWit Ai., jC, 13.
brues o IXonly biSi te We tion t oP opcif b5hw t In som ways exception handling in MIPS-X Wolowed the
deh il uqke onlyrconsi in die dorutin o MIPS model. Exceptions mu so vectored so the exception

dealwiththein~t~tlO5 i jig~bhndler must first determine the cause of the exception. On
Various combinations of one and two-sdo schieon wb iiiPS dunr wan an on-chip aonim p eo"ia when ti

an witou squadving wer evaluated. The rsumito musw inormation wan stoeW. AMIS-X relies knlead on a separate
is Table I. The n squesh schema is the som as used in of-chip interrupt cotrol unit that contains this information.
MIPS whor the instructions is the slots am always executed. Th PSW does contain bits thad determine whether the
Me hw e p hu te squash adno ny a h pm fS n exception was caused by an Interrupt. arithmetic overflow or a

asA #(harp actions for the instructions is die branch non rnaskable interrupt.
slam The squesb qurind scheme includes the me Of MIPS-X differed, from MIPS in how exceptons affected
I a wilh no squesb instructions in the slots an well AsnWpptm.M asecpinSatdWt h
aoingrohe a squasigd esefien of branhe m O by ~ pieln being flushed of asn y instructions as possible tha

affiarb sqashng w otiony o brachs i muh Iwere alrady executing Then die progra counter (PC) was
__ amood and die wrmr PCs aved from, the PC chain. Thre

flushing of the pipeline cansed a great many extra Mass and
Bvrnch Scheme CyclesBrunch2 added a lo of complexity.

In MIPS-X the pipeline is halted when an exception
2-so masquash 2.0 ocur Noc instructions mu completed. The PC is
2-slot always squash 1.3 immediately ad to zero and the shift chain of old PC values is
2-slot squash optional 1.3 frozen, saving the addresses of die intructions that we still in
I1-Slt n squash I A the pipeliune. The current PSW is placed in PSWoWd
I-slot always squash 1.3 itr upt a turned off and die machine ispieced volo system
I-slot squash optional 1.1 mode. The exception routine, located at address =emo as

system spme begins execution by firat saving die tOm PCs
Table 1: AverageCycles perlBranch Instruction from the PC chain and PSWoid onto Oie syse stack O0ce

fOW Various Broc di MPte sate of the interrupted pracess is saved. bee PC shifting
can be enabled sri interrupts unmasked if desited. M1w

2ff ~ __ -~,--I-*~ nf~reoma sequence involves relaading the PC chain with the
29 al ofObs A elaydow ouM e flledwM thrdee saved PCs and then doing thee special jumps using die

inowo dw _SaI _MwWWo aICc contest of the PC chain; the PC chain i sdt tr h
am of Ane bn& a a broad with 2 so-opri i I wo dstay dab. i
demand to have a am of1

~Uaddresses during the mealn sequence. Interrupts mus Control
bedisabled both dung machine ot saving and resitog.

Deftn doe discussions about how kuanches we to be Our overriding go for t contrl section was to keep it
- -------- dA there wo sona concern about do uffects the . sipl as possible. In part we accomplished our goal by

brimch implemetation woud have am exception hitdlin. eliminain hurdwa features that would complicate tie
The original fueling was tha having - ,branch elo would machine without providing significant performance
requir stat is the mie an implemnenting advantages. We also tried to keep a uniforma view of the
scundiing braPche would make the st macbins even mmse hardware, trying to reuse the -am cotrol mAnis for
comeplicated. The squash pmoponents is5ued " the -ay featues. Merging exceptions and squasi, and
budwure needed lo Freeia, die pipeline during an exception merging miemory instructions and copsuomorw operations
could be land to implement squashing 1b1unches. They not we examples of this straegy. Fusaily, we eliminated the
only convinced the design team they dlo turned out to be goba covol for doe machine and replaced it with a set at

m P r I Squashing two brunc Aslots only requires a single smaller controllers, one for each sectio of the datapath. We
extra input to die squashing finite state machine thug b used to fiudier patitioned die design so doet a single desgner was
handle exceptions. Brach squashing and squashing for re--s-l for both the datapath and control in his section
exceptons am very simila. giving each de dne o~ incentive to make his control section

The general Idiea usend to no-o an Instruction is quite simpler. Most of the machine control is simple decoders,
simple. All diat needs to be done is So ad a bit in doe many generated automastically using PLA geeakis.
destination specifier for tha instruction. This bit is used by One technique that MIfPS-X used to great advmugep was a
the register fie to deleiniine whether to perform a write or qualified clock, called Vl, to latch the control state of the
not. Ther mu 2 lines in the machine that cmn set this bit. machine. This clock is the #1 clock qualified with owt
Exception and Squash. Exception no-ops the instructions ini atavuel cw w m ad unot iuvwrAl cadi. mwss When either
the AWA and hMld stages of the pipelime while Squash cah misses, the VI clock does not rise, and the control state
no-op the Instructions curndy in the IP and RFP stages of de am shift down die pipeline control latches. The lack of a
die pipeline. The only added complexity occurs with die w1 clock can=e the machine to execute the previber #2 phase
Malt/Dv registe and tie PSW which contans the only before retying the #1 phase. This simple techniqu made
visible state outside of die register fl. Writes to these temporary stalling of the entire pipeline very easy, and
locaions mue also prevented by Exception and Squash. allowed us to ipeent the Ine miss described earler

There is only one exception generated on chip and it is a without greatly increasing die machine complexity. Since the
tra on overflow in the ALU or die nailtiplicationdlvisin wl. clock is only allowed to clock control stabe laitche s a
hardware. At the start of doe design it was feb tha detecting -ul width can be quite narrow (about 10 us). As long as die
overflows and generating a trap was to complex to do. The miss signal is nieoonic, it is possible to detect a cache bit
original solution was the concept of a a* .vwflow bi. If after die data has been latched, in die machine without stalling
wn oeeflow occurred then doe sticky overflow bit would be die machine.

oin the PSW. This bit could dim be checked at a later tii Together din control techniques we quite successful
to determine whether an overflow had occurred. This momn The control was nicely divided among the 4 main datapath
tha t swould not be possible to precisely detc the ocuuesections, with die only two finit state machines (FSMa)
of the overflow but at least it was possible to indicat the residing in the PC unit. These ISMs beadle instruction cache
IpP sence of a incoriect rsult. We began looking for other misses and Instruction squashing during exception and
overflow mechanistm when we discovered that doe sticky squased branches. The state diagrams for the two mahines
overflow bit interacted badly with bypassing. hmlead of ar so in Ftv 3 mid 4. Thes FISMs mu implemnted
ming the hordware sinmple, it se le o mkdoPWas simple shift megisters with a very small Imm of random
harder to design. logic and occupy less than 0.2% of die total are of the chip.

Several other simple schemas ween = oId. One
was a SaO.4id)vefow instruction that Jusoe d the
overflow bit from Mhe ALIJ intoD die m09 significant bit of the Status and Conclusions
AlA reult. Iha Instruction could then be used to dete-mine
whethier die addition causes an overflow by simply testing for The MIPS-X projec began in earnest durng fte summier
the Op~ of te result. Another sIugestO was a Brsnc on of 1964. By January 1965, we had setled on a initial
Ov.a1ow instruction did caused a branch if the resaft of the vrino h ntuto eadhdwitna ntuto

brunchrcomparion tao ldfloe These awe upmp afor level simulator for the mchine. We we abl to use Much Of
hverware solutions thtw ud rvd m mleupot~~ software sysitem that was created for M IPS for MlPS-X as

overlow etecionwell. Thia greatly reduced the sottwere development effort.
At this pon die exception hardware had been designed The conmpiedimulaior system generated intruction traces

and we observe that generating a true trap on overfow was that we used to gather cache statistic and fine tune the
so difficult; in fact It was simlpler than the original sticky architecture By April 1985, dIe mrchitecture had stabilized
overflow biL We decided to abanon t sticky overflow bit mid work on the detailed design acceleruted. We ran our first
for a uinakab trap on overflow. instruction through a detailed functional simulato of the

entire processor during the summer. The final design was
taped out at t end of April 1936 and we received frst
silicon back in October.

The processor was designed to rn it a clock rat of 20

Mbz, eecft a imisotu away cycle yielin a peak Sinmulatons of our targe Pascal benchmnarks show that
pefrbromce of 20 MIPs. Timing smalysis Ibwe tha thW e 15.6% of all instructions on no-opa due lo unused branch
vunloitat was shippe is Aprl would m at about 16 MHz. delays or other pipeline interlocks that cannot be optimized
bhld timing leats hae show that the put i fully fimcdoual away. For LA*p this number increases slightly to 18.3% due
and it rim at the mi puje - 16 M~fz clock ste Woe ow In a lager snmbe of Jumps and many kmead-ad interlocks
fixing so aical -ef a that we an achieve our goal of 20 caused by chasing CW and & hi14*When the mmoy
NHz. The die is8. Smmby I m ad has a tof .106 in syatem ovutmeed is included (delays from Icache and Ecache
of which 34.we for siggals and 24mar for pow sad genmid. misses). the avrage instuction requime about 1.7 cycles
There = about ISMK -mii*s- two thirds of which = in meaning MIPS,-X should have a sustained throughput above
as instructin cache. The pow issiaion is less thu 1 W. 11I MIPs. Our benchmark progam have stalkc code sinmi

the =We of 50 Kflyts to 270 KByte. so we cannot get exact
numbers for the effects of the external cache because most of
the bencuuls fit entirely. Smith's numbers's we not Imp~
enough so we Used mch larger tWae 16 to derive die Ecache

E or The perfrmance of a machine is based on three factors:
8Odt9~ the number of instructions executed (Pat length), the number

of cycles per instruction and the cycle tine. Ideally, all thre
factors shoulil be minmized but we have shown that by

C40TO Fhaving simple instuction deoewe can significantly
decrease the latter two factors without adversely affecting the
path length. Comparison of Pascal programs with a VAX
1 1F750 shows that MIPS-X executes about 25% -ere

Sons 2 smihI istructions but executs the programs about 14 times faste
for =moptimized code. The static code size for MIS-X is also
about 25% greater than VAX code. The Stanford comipiler
system was used and the only difference was in the back end
code genersaors. However. when M1PS-X code is conipared
to the Berkeley Pascal compiler, the path length i 80% longer

PAW and the speedup is only 10 times faster than the VAX. Much
of this difference m~y be due to poorer code from our VAX
code generaor. We feel that when we go the reults for
optimized code, the numbers will be somewhere inbeiween.

Fue3: SqIuabiht Su mahn The goal o(the MEPS-X project from the beginning was to
lean firom MIPS an design a simpler yet fate processor.
The emphas in all design decisions throughout the project
was simplicity- minimize state and keep the control simple.

PAMThe implementation of MIPSX has shown that it is possible
to implement a high performance nnopceso that
supports coprocessots, without requirin complex control or
hundreds of pins.

ca&* Acknowledgements
The MIPS-X reeamvh project has been supported by the

c~d* Defense Advanced Research Projects Agency under contract
Id" Enplom 1ft PDA90343-C-033S. Paul Chow was parially supported by

As-my Lim Ia-piii9Ri1 fellowshIp fromn the Natural Sciences and
Engineering Research Council of Canada.

Many people have contributed to the MlPS,-X meseach
effort. Malcolm Wing. Arturo Saix Kame Huyser, Anant
Agarwa, Scott McFarling. C.Y. Chu, Steve Richardson,
Stev Tjiang. John Acken, Richard Simnii Glenn Gulak,

Cadle Kathy Cuderman, Takeshi Tokuda, Eugen Reithmann. Steven
On 52 Przybylskl, Chris Rowen, Norn Jouppi, Thomas Gross, John

Gill and John Henneasy deserve special thanks for their
contribution to the project.

Figuire 4: Cache Miss Finite State Machine

Reforences 4753.
16. Anaua Agarwal, Richard L Sies and Mark Horowitz,

1. 0. IaI, "The 801 Mialcomputer', Proc. "ATUM: A New Technique for Capturing Address
SIGAACH/SIGPLAN Symposimm as Architectural Trace Using Microcode", 13th Ammul Interariouw
Saliort fir Programing Languqae ad Opertati S wroeirn on Computer Architectue, IEE, June
Syst&%% ACM, PJb Ak,, Mur 198, pp. 3947. 1986, pp. 119 27.

2. D. Pederson and C. Sequin, "A VLSI RISC",
ComipterS, Sqpembe, 1932, pp. 8-21.

3. M. Kdevenim, "Reduced Instruction Set Computer
Architectums for VLSI", Computer Science Division
(EECS) UCBXS 83/141, Univ. of CA at Berkeley,
October 1983.

4. J. Henessy, et aL, "The MIPS Machine",
COMPCON, IEEE, Spring 1982, pp. 2-7.

5. S. Przybylakl, T. Gross, J. Hennesy, N. Jouppi,
C. Rowen, 'Grgenizetion and VLSI Implementation
of MIPS", Journ of VLSI and Computer Sysau,4
Vol. 1. No. 2, December, 1984, pp. 170-206.

6. Anent Agarwal, Paul Chow, Mark Horowitz, John
Acken Atuao Sal and Jom Henaeasy, "On-chip
Inmucton Caches for High Performae Processors",
Proce ,ing St Vord Copferoce as Advanced
Rearch in VLSI, Marh 1987, pp. 1-24.

7. J.L Hennessy, N. Jouppi, P. Buel T.IL Gross and
I. Gill, "HardwaeSoftware Tradeoffs for Increased
Performance", Proc. SGARCHISGPLAN Sympozum
as Architectural Saqportfiw "oramming Languages
and Operating Systmw. ACM, Palo Alto, March 1982,
pp. 2-11.

I. Thomas Grosw Code Optia dom of Pipe
Comanar, PhD dissertaio Stanford University,
December 1983, Available as Stanford University
CSL Technical Report 83-255.

9. John Hennesay and Thomas Gros, "Postpas Code
Opdmiaon o' Pipeline Contrainta", ACM
Trasactios on Programming Languages and
Systm, VoL 5, No. 3, July. 1983, pp. 422-448.

10. Scott Mcdauing and John Hennessy, "Reducing the
Cost of Braniches", Proceedings, 13th Sswpaam on
Computer Architecture, June 1986, pp. 396403. Ac

11. .E. Smith, "A Study of Branch Pmdition Strategies",
Proceedings, Eighth Symposimm as Ca uuer
Architecture, May 198 1, pp. 135-148.

12. Johnny K. F. Lee, Alan Jay Smith, "Branch Prediction
Strategies and Branch Target Buffer Design", -""- -
Camputer, January, 1984, pp. 6-22.

13. Btter W. Lampool, "Hints for Computer System
Design", IEEE Software, Vol. 1, No. 1, Jamuary,
1914 pp. 11-30. I r

14. Peter Stenkiste, LJSP as a Reduced-Inasructias-Set
Processor: Characterizations mid Optivdiuiom, PhD ~'
dissertationk Stanford University, 1987. To appear in
1987.

15. Alm Jay Smith, "Cache Memories", Computing
Surveys. Vol. 14, No. 3, September, 1982, pp.

6 It &S$ 1 WMA W . A ri Y Z Z I r r M4 l AL. z e ezfv 0 K wle Z w 0, . W

